Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Northern forest soils are vital for climate change mitigation since upland sandy soils favor the net consumption/oxidation of atmospheric methane (CH4). We are studying biogeochemical CH4 cycle processes in a Northern Forest (Howland Research Forest, Maine), where upland soils are interspersed with wetland (Sphagnum bog), and upland-wetland transition soils along with hummock-hollow microtopography. This complex mosaic of microsites with sources and sinks of CH4 is subjected to change under future wet climates projected for this region, with a potential for these forests to shift from a net CH4 sink to a net CH4 source. Net CH4 emissions in a wet climate can increase either by inhibiting methanotrophs or favoring methanogens, or both. Thus, quantifying underlying processes of gross CH4 production and consumption can reduce the uncertainty of CH4 sink/source estimation in this critical ecosystem. We have collected baseline soil data across the forest's landscape including Total Carbon and Total Nitrogen with the Elemental Analyzer, Gravimetric Soil Moisture, and pH. Furthermore, stable isotope dilution method will serve as a proxy for methanogenic and methanotrophic activities to quantify gross rates of CH4 production and consumption from a flooding (wet-up) experiment in Howland Forest. We will differentiate between CH4 consumption and production by measuring both the change in the amount of CH4 and the ratio between labeled and unlabeled CH4 in a closed system. We will analyze the stable C isotope in 13CH4 to determine gross rates of CH4 production and oxidation in situ and within laboratory incubations. The in situ stable isotope dilution technique will be compared with the gas push-pull method, to test the suitability of a simple, low cost method to quantify gross CH4 oxidation rates. Novel data obtained in this study will constrain CH4 cycle processes in a biogeochemical model to quantify CH4 source-sink potential in Northern Forests under current and future climatic conditions.more » « less
-
Abstract Arctic permafrost soils store vast amounts of carbon (C)‐rich organic matter that has accumulated due to low temperatures that suppress microbial decomposition. As Arctic warming intensifies, soil microbes become increasingly active, even while plant growth remains dormant. Seasonal decoupling between plant and microbial decomposer growth can accelerate carbon dioxide (CO2) release from soils, however, most Earth system models underestimate cold‐season C emissions and do not accurately represent the freeze–thaw transitions that govern microbial access to substrates during these critical periods. These model–data mismatches often stem from empirical formulations, such as using a fixed Q10functions to represent microbial respiration, an oversimplification of a complex interplay of temperature, moisture, and substrate diffusion. To address this, we incorporated explicit, temperature‐dependent diffusional constraints on microbial activity, (the Dual Arrhenius Michaelis–Menten (DAMM) model), into the Stoichiometrically Coupled Acclimating Microbe–Plant–Soil (SCAMPS) model which uses the Q10function to represent microbial respiration. We used this enhanced model (SCAMPS_DAMM) to simulate Arctic ecosystem responses to a 50‐year winter warming scenario and compared outcomes to the original SCAMPS framework. While both models predicted overall soil C losses under warming, SCAMPS_DAMM produced more constrained increases in microbial respiration and plant productivity. These differences led to similar total ecosystem C declines but divergent patterns of C and N allocation between plant and soil pools. Thus, incorporating mechanistic constraints on microbial access to substrates through explicit representation of temperature and moisture controls altered model projections of Arctic biogeochemical responses to climate change.more » « less
-
Abstract Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical interactions between the soil, vegetation, and atmosphere. We varied soil and environmental parameters to assess the impact on cryohydrological and biogeochemical outputs in the model. We analyzed the responses of ecosystem carbon balances to permafrost thaw by running site-level simulations at two long-term tundra ecological monitoring sites in Alaska: Eight Mile Lake (EML) and Imnavait Creek Watershed (IMN), which are characterized by similar tussock tundra vegetation but differing soil drainage conditions and climate. Model outputs showed agreement with field observations at both sites for soil physical properties and ecosystem CO2fluxes. Model simulations of Net Ecosystem Exchange (NEE) showed an overestimation during the frozen season (higher CO2emissions) at EML with a mean NEE of 26.98 ± 4.83 gC/m2/month compared to observational mean of 22.01 ± 5.67 gC/m2/month, and during the fall months at IMN, with a modeled mean of 19.21 ± 7.49 gC/m2/month compared to observation mean of 11.9 ± 4.45 gC/m2/month. Our results underscore the importance of representing the impact of soil drainage conditions on the thawing of permafrost soils, particularly poorly drained soils, which will drive the magnitude of carbon released at sites across the high-latitude tundra. These findings can help improve predictions of net carbon releases from thawing permafrost, ultimately contributing to a better understanding of the impact of Arctic warming on the global climate system.more » « less
-
Abstract The changing thermal state of permafrost is an important indicator of climate change in northern high latitude ecosystems. The seasonally thawed soil active layer thickness (ALT) overlying permafrost may be deepening as a consequence of enhanced polar warming and widespread permafrost thaw in northern permafrost regions (NPRs). The associated increase in ALT may have cascading effects on ecological and hydrological processes that impact climate feedback. However, past NPR studies have only provided a limited understanding of the spatially continuous patterns and trends of ALT due to a lack of long-term high spatial resolution ALT data across the NPR. Using a suite of observational biophysical variables and machine learning (ML) techniques trained with availablein situALT network measurements (n= 2966 site-years), we produced annual estimates of ALT at 1 km resolution over the NPR from 2003 to 2020. Our ML-derived ALT dataset showed high accuracy (R2= 0.97) and low bias when compared within situALT observations. We found the ALT distribution to be most strongly affected by local soil properties, followed by topographic elevation and land surface temperatures. Pair-wise site-level evaluation between our data-driven ALT with Circumpolar Active Layer Monitoring data indicated that about 80% of sites had a deepening ALT trend from 2003 to 2020. Based on our long-term gridded ALT data, about 65% of the NPR showed a deepening ALT trend, while the entire NPR showed a mean deepening trend of 0.11 ± 0.35 cm yr−1[25%–75% quantile: (−0.035, 0.204) cm yr−1]. The estimated ALT trends were also sensitive to fire disturbance. Our new gridded ALT product provides an observationally constrained, updated understanding of the progression of thawing and the thermal state of permafrost in the NPR, as well as the underlying environmental drivers of these trends.more » « less
-
Abstract Dryland ecosystems cover 40% of our planet's land surface, support billions of people, and are responding rapidly to climate and land use change. These expansive systems also dominate core aspects of Earth's climate, storing and exchanging vast amounts of water, carbon, and energy with the atmosphere. Despite their indispensable ecosystem services and high vulnerability to change, drylands are one of the least understood ecosystem types, partly due to challenges studying their heterogeneous landscapes and misconceptions that drylands are unproductive “wastelands.” Consequently, inadequate understanding of dryland processes has resulted in poor model representation and forecasting capacity, hindering decision making for these at‐risk ecosystems. NASA satellite resources are increasingly available at the higher resolutions needed to enhance understanding of drylands' heterogeneous spatiotemporal dynamics. NASA's Terrestrial Ecology Program solicited proposals for scoping a multi‐year field campaign, of which Adaptation and Response in Drylands (ARID) was one of two scoping studies selected. A primary goal of the scoping study is to gather input from the scientific and data end‐user communities on dryland research gaps and data user needs. Here, we provide an overview of the ARID team's community engagement and how it has guided development of our framework. This includes an ARID kickoff meeting with over 300 participants held in October 2023 at the University of Arizona to gather input from data end‐users and scientists. We also summarize insights gained from hundreds of follow‐up activities, including from a tribal‐engagement focused workshop in New Mexico, conference town halls, intensive roundtables, and international engagements.more » « less
-
Abstract The northern permafrost region has been projected to shift from a net sink to a net source of carbon under global warming. However, estimates of the contemporary net greenhouse gas (GHG) balance and budgets of the permafrost region remain highly uncertain. Here, we construct the first comprehensive bottom‐up budgets of CO2, CH4, and N2O across the terrestrial permafrost region using databases of more than 1000 in situ flux measurements and a land cover‐based ecosystem flux upscaling approach for the period 2000–2020. Estimates indicate that the permafrost region emitted a mean annual flux of 12 (−606, 661) Tg CO2–C yr−1, 38 (22, 53) Tg CH4–C yr−1, and 0.67 (0.07, 1.3) Tg N2O–N yr−1to the atmosphere throughout the period. Thus, the region was a net source of CH4and N2O, while the CO2balance was near neutral within its large uncertainties. Undisturbed terrestrial ecosystems had a CO2sink of −340 (−836, 156) Tg CO2–C yr−1. Vertical emissions from fire disturbances and inland waters largely offset the sink in vegetated ecosystems. When including lateral fluxes for a complete GHG budget, the permafrost region was a net source of C and N, releasing 144 (−506, 826) Tg C yr−1and 3 (2, 5) Tg N yr−1. Large uncertainty ranges in these estimates point to a need for further expansion of monitoring networks, continued data synthesis efforts, and better integration of field observations, remote sensing data, and ecosystem models to constrain the contemporary net GHG budgets of the permafrost region and track their future trajectory.more » « less
An official website of the United States government

Full Text Available